Linked data (Python/LINDAS/SPARQL/hydrodata)

TL;DR;

Make a map of the original and/or fixed coordinates of the hydrological stations of the BAFU using the data from Lindas

The above map is an illustration of the data we can extract with use of a SPARQL query and lindas of the hydrological data published on it. As you can see, there are two sets of points, one in Switzerland (corrected version) and one in the Mediterranean based on the “raw” lindas data (400km offset for some reason).

In my last post, I wanted to see how to get the current data of waterbodies from lindas.admin.ch in one table including geometry information. Now, we of course want to use Python to investigate the data; additionally, we want to extend our existing hydrodata SPARQL query to handle also a subset of stations instead of all stations.

import datetime
import requests
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt


# The prefixes, mainly to have them seperate 
PREFIXES = """
PREFIX schema: <http://schema.org/>
PREFIX hg: <http://rdf.histograph.io/>
PREFIX la: <https://linked.art/ns/terms/>
PREFIX ex: <http://example.org/>

# hydro related prefixes
PREFIX h: <https://environment.ld.admin.ch/foen/hydro/>
PREFIX hd: <https://environment.ld.admin.ch/foen/hydro/dimension/>
PREFIX hgs: <https://environment.ld.admin.ch/foen/hydro/station/>
PREFIX river: <https://environment.ld.admin.ch/foen/hydro/river/observation/>
PREFIX lake: <https://environment.ld.admin.ch/foen/hydro/lake/observation/>

# geo related prefixes
PREFIX wkt: <http://www.opengis.net/ont/geosparql#asWKT>

# hydrodata related prefixes (fake) that we use to reference to the historical data. haha.
PREFIX hydrodata: <https://www.hydrodaten.admin.ch/plots/>

"""


## a function that makes the response to a dataframe, tailored to the hydrodata
# and that also contains a small validation step to remove "outdated" values
def _response2dataframe(response,
                        validate=True,
                        time_threshold=datetime.timedelta(minutes=30)):
    # return pd.read_csv(io.StringIO(resp.text))
    data = response.text.strip().split('\n')
    columns = data[0].split(',')
    data = [i.strip().split(',') for i in data[1:]]
    index = [i[0] for i in data]
    ix = columns.index('data')
    values = [[i[0]] + i[ix].split(';') for i in data]
    data = [[j for _, j in enumerate(i) if _ != ix]
            for i in data]
    # the dataframe holding all non measurement values
    columns.pop(ix)
    data1 = pd.DataFrame(columns=columns,
                        data=data,
                        index=index)

    for col in data1.columns:
        data1[col] = pd.to_numeric(data1[col], errors='ignore')

    def _list2dict(datalist):
        return {i: j for i, j in zip(datalist[::2], datalist[1::2])}
    values = {i[0]: _list2dict(i[1:])
              for i in values}
    ix = values.keys()
    columns = []

    for i in values.items():

        vartypes = list(i[1].keys())

        for vartype in vartypes:
            if vartype in columns:
                pass
            else:
                columns.append(vartype)
    data = [[] for i in columns]

    for i in ix:
        for colno, colname in enumerate(columns):
            value = values[i][colname] if colname in values[i].keys() else ''
            data[colno].append(value)
    data = np.transpose(data)

    data2 = pd.DataFrame(columns=columns, data=data, index=ix)
    for col in data2.columns:
        if col != 'measurementTime':
            data2[col] = pd.to_numeric(data2[col], errors='coerce')

    data = pd.concat([data1, data2], axis=1)
    data['query_time'] = pd.to_datetime(data['query_time'])
    data['measurementTime'] = pd.to_datetime(data['measurementTime'])

    if validate:
        time_threshold = pd.to_timedelta(time_threshold)
        good = data['query_time'] <= data['measurementTime'] + time_threshold
        # for illustration
        bad = data['query_time'] >= data['measurementTime'] + time_threshold
        data['measurementAge'] = data['query_time'] - data['measurementTime']
        data = data[good]
    return data



def get_hydrodata(station_ids=None,
                  return_as_dataframe=True,
                  validate=True,
                  time_threshold=datetime.timedelta(minutes=30)):
    query = [
        """# what we want to get out of the query as "nicely" formatted data
       SELECT ?station_id ?station_name ?station_type ?station_type_nice
              ?latitude ?longitude ?station_iri ?station_data_iri ?station_geometry_iri
              (group_concat(?measurement_type_measurement_value;SEPARATOR=";") as ?data)
              ?query_time
              # add the https://hydrodaten.admin.ch url for the data that go back 7 days (actually 40 days sometimes, see dev console)
             (if(contains(?data,"discharge"), uri(concat(str(hydrodata:), 'p_q_7days/', ?station_id, '_p_q_7days_de.json')), "")
              as ?hydrodata_url_discharge_waterlevel)
             (if(contains(?data,"temp"), uri(concat(str(hydrodata:), 'temperature_7days/', ?station_id, '_temperature_7days_de.json')), "")
              as ?hydrodata_url_temperature)
       """
        # where part including initial setup of measurement types
        """
          WHERE { ?station ?prop ?value.
                 filter( ?prop in (ex:isLiter, hd:measurementTime, hd:waterTemperature,  hd:waterLevel, hd:discharge))
        """,
        # generating data and variables part
        """
        bind(replace(replace(
             str(?station), str(river:), "", "i"),
             str(lake:), "", "i")
            as ?station_id)
        # the above is equivalent to this in theory but the above uses prefixes so would be easier to change
        # in case of changes
        # bind(strafter(str(?station), "observation/") as ?station_id2)
        # get the kind of station this is (whether lake or river) - the hierarchy/ontology here is weird as all are measurement stations
        # or observation but the distinction is river/lake first then observation
        bind(strbefore(strafter(str(?station), str(h:)), "/") as ?station_type)
        # uppercase the first letter -> why is there no capitalize function in SPARQL :throw_table:
        bind(concat(ucase(substr(?station_type,1,1)), substr(?station_type,2,strlen(?station_type)-1)) as ?station_type_nice)
        # remove some filler words from the data
        bind(replace(str(?prop), str(hd:), "", "i") as ?measurement_type)
        # convert the actual measurement value to a literal
        bind(str(?value) as ?measurement_value)
        # introduce the time of the query to (maybe) see if the values are old
        bind( str(now()) as ?query_time)
        # combine the type of measurement with the value so we can group by and not loose information
        bind(concat(?measurement_type, ';', ?measurement_value, '') as ?measurement_type_measurement_value)

        # start making IRIs so we can check/link back to lindas
        # the IRI containing information of the station itself (not linked to river/lake)
        bind(IRI(concat(str(hgs:), ?station_id)) as ?station_iri)
        # generate the geometry IRI
        bind(IRI(concat(str(hgs:), concat(?station_id,"/geometry"))) as ?station_geometry_iri)
        # generate the station IRI that holds the data information
        bind(IRI(concat(str(h:), ?station_type, "/observation/", ?station_id)) as ?station_data_iri)
        # get the information about the location of the station
        ?station_geometry_iri wkt: ?coordinates.
        # also get the name
        ?station_iri schema:name ?stat_name.
        bind(replace(?stat_name, ',', ';') as ?station_name)

        # simplifiy the geometry to lon/lat in array form
        BIND(STRBEFORE(STRAFTER(STR(?coordinates), " "), ")") AS ?latitude)
        BIND(STRBEFORE(STRAFTER(STR(?coordinates), "("), " ") AS ?longitude)
    }""",

    # grouping part
    """
    group by # the station information
    ?station_id ?station_type ?station_type_nice ?station_name
    ?latitude ?longitude
    # the IRIs
    ?station_iri ?station_data_iri ?station_geometry_iri
    # validation information
    ?query_time
    """,
    # sorting part
    """
    order by ?station_id
    """

    ]
    if station_ids is not None:
        # per default, get all stations but if some stations are given uses
        # this modication instead
        station_ids = station_ids if isinstance(
            station_ids, list) else list(station_ids)

        station_ids = '"' + '","'.join([str(i) for i in station_ids]) + '"'
        query.insert(1, f'filter (?station_id in ({station_ids}))')

    query = PREFIXES + '\n'.join(query)
    resp = requests.post("https://ld.admin.ch/query",
                         data="query=" + query,
                         headers={
                             "Content-Type": "application/x-www-form-urlencoded; charset=utf-8",
                             "Accept": "text/csv"
                         }
                         )

    resp.encoding = "utf-8"

    if return_as_dataframe:
        resp = _response2dataframe(resp,
                                   validate=validate,
                                   time_threshold=time_threshold)

    return resp, query
    
if __name__ == '__main__':
    df, query = get_hydrodata()
    subset = [2091, 2613]
    df_subset, query_subset = get_hydrodata(station_ids=subset,
                                            return_as_dataframe=True)

A first approach is given by the lindas help which showcases the use of the typical request together with pandas. The example is straightforward but not usually how we’ll have data (more than 3 columns ..) that are useful with pandas. As we’ve seen in the last exploration of lindas, we can write a query that gives us a row for each station of the hydrological network of the BAFU. To be consistent with the example, we want a CSV return, which means replacing all commas with something better (especially the names of stations sometimes do have a comma inside). Other than that, the query that we used before also works directly via Python and we only extended it with the option to additionally filter with station_ids by adding the below (which adds a very simple filter into the query):

    if station_ids is not None:
        # per default, get all stations but if some stations are given uses
        # this modication instead
        station_ids = station_ids if isinstance(
            station_ids, list) else list(station_ids)

        station_ids = '"' + '","'.join([str(i) for i in station_ids]) + '"'
        query.insert(1, f'filter (?station_id in ({station_ids}))')

Additionally, as I didn’t manage to split the values again into separate columns after the grouping (or only with a lot of needless wordiness), I wrote a small converter function that mainly extracts the general information (meta-information if you will like latitude/longitude or similar) and converts the actual measurement data into columns and concatenates the two.

## a function that makes the response to a dataframe, tailored to the hydrodata
# and that also contains a small validation step to remove "outdated" values
def _response2dataframe(response,
                        validate=True,
                        time_threshold=datetime.timedelta(minutes=30)):
    # return pd.read_csv(io.StringIO(resp.text))
    data = response.text.strip().split('\n')
    columns = data[0].split(',')
    data = [i.strip().split(',') for i in data[1:]]
    index = [i[0] for i in data]
    ix = columns.index('data')
    values = [[i[0]] + i[ix].split(';') for i in data]
    data = [[j for _, j in enumerate(i) if _ != ix]
            for i in data]
    # the dataframe holding all non measurement values
    columns.pop(ix)
    data1 = pd.DataFrame(columns=columns,
                        data=data,
                        index=index)

    for col in data1.columns:
        data1[col] = pd.to_numeric(data1[col], errors='ignore')

    def _list2dict(datalist):
        return {i: j for i, j in zip(datalist[::2], datalist[1::2])}
    values = {i[0]: _list2dict(i[1:])
              for i in values}
    ix = values.keys()
    columns = []

    for i in values.items():

        vartypes = list(i[1].keys())

        for vartype in vartypes:
            if vartype in columns:
                pass
            else:
                columns.append(vartype)
    data = [[] for i in columns]

    for i in ix:
        for colno, colname in enumerate(columns):
            value = values[i][colname] if colname in values[i].keys() else ''
            data[colno].append(value)
    data = np.transpose(data)

    data2 = pd.DataFrame(columns=columns, data=data, index=ix)
    for col in data2.columns:
        if col != 'measurementTime':
            data2[col] = pd.to_numeric(data2[col], errors='coerce')

    data = pd.concat([data1, data2], axis=1)
    data['query_time'] = pd.to_datetime(data['query_time'])
    data['measurementTime'] = pd.to_datetime(data['measurementTime'])

    if validate:
        time_threshold = pd.to_timedelta(time_threshold)
        good = data['query_time'] <= data['measurementTime'] + time_threshold
        # for illustration
        bad = data['query_time'] >= data['measurementTime'] + time_threshold
        data['measurementAge'] = data['query_time'] - data['measurementTime']
        data = data[good]
    return data

Additionally, we can fix the offset that we found (~400 km in latitude) in the geometry by using the following (after importing my conversion functions):

rw, hw = wgs84_to_ch1903(df['latitude'], df['longitude'])
hw = hw + 400000
lat, lon = ch1903_to_wgs84(hw, rw)

Now we can see the difference, especially when we plot the dataframe of water temperatures (the labelling is really overkill at this point and just for illustration):

## fix the offset

hw, rw = wgs84_to_ch1903(df['latitude'], df['longitude'], plus=True)
hw = hw + 400000
lat, lon = ch1903_to_wgs84(hw, rw)


# setup the map
import cartopy.crs as ccrs
import cartopy.feature as cf
fig, ax = plt.subplots(dpi=200, figsize=[9, 9], subplot_kw={"projection":ccrs.PlateCarree()})
thevar = 'waterTemperature'
units = {'waterLevel': 'm MSL', 'waterTemperature': '°C', 'discharge': 'm³/s'}

# show the "original" coordinates
s = ax.scatter(df['longitude'], df['latitude'], s=150, edgecolor='k', c=df[thevar], vmin=0, vmax=25, cmap='coolwarm')
# show the fixed coordinates
s = ax.scatter(lon, lat, s=150, edgecolor='k', c=df[thevar], cmap='coolwarm', vmin=0, vmax=25)

# the respective name of the station as label if need be
add_station_label = False
if add_station_label:
    for sid, thevalue, lon, lat, station_name in zip(df['station_id'], df[thevar], df['longitude'], df['latitude'], df['station_name']):
        if np.isnan(thevalue):
            continue
        ax.text(lon, lat, station_name.replace(';','\n').replace(' ','\n'), va='center', ha='center', fontsize=3, clip_on=True)

# map decorations
ax.set_xlabel('Longitude (°)')
ax.set_ylabel('Latitude (°)')
plt.colorbar(s, aspect=50, pad=0.1, location='bottom', label=f'{thevar.replace("water","").capitalize()}'+f' ({units[thevar]})')
ax.set_title(f'Hydrodata in Switzerland')
ax.gridlines(draw_labels=True, dms=True, x_inline=False, y_inline=False, lw=0.25, color='k')
# if you want, add a stockimage but it won't look nice at this resolution
#ax.stock_img()

# add coastline and borders to illustrate
ax.coastlines()
ax.add_feature(cf.BORDERS)
# set proper boundaries for illustration
ax.set_ylim(42, 48)
ax.set_xlim(5, 12)

If you wish instead to only plot data points that have a valid temperature you can use the condition notnull() on the variable:

# fix the offset
hw, rw = wgs84_to_ch1903(df['latitude'], df['longitude'], plus=True)
hw = hw + 400000
lat, lon = ch1903_to_wgs84(hw, rw)

# setup the map

fig, ax = plt.subplots(dpi=200, figsize=[16, 12], subplot_kw={"projection":ccrs.PlateCarree()})
thevar = 'waterTemperature'
units = {'waterLevel': 'm MSL', 'waterTemperature': '°C', 'discharge': 'm³/s'}

# filter out stations without values for this variable
cond = df[thevar].notnull()
# show the "original" coordinates
s = ax.scatter(df['longitude'][cond], df['latitude'][cond], s=150, edgecolor='k', c=df[thevar][cond], vmin=0, vmax=25, cmap='coolwarm')
# show the fixed coordinates
s = ax.scatter(lon[cond], lat[cond], s=150, edgecolor='k', c=df[thevar][cond], cmap='coolwarm', vmin=0, vmax=25)

# map decorations
ax.set_xlabel('Longitude (°)')
ax.set_ylabel('Latitude (°)')
plt.colorbar(s, aspect=50, pad=0.1, location='bottom', label=f'{thevar.replace("water","").capitalize()}'+f' ({units[thevar]})')
ax.set_title(f'Hydrodata of Switzerland')
ax.gridlines(draw_labels=True, dms=True, x_inline=False, y_inline=False, lw=0.25, color='k')

# if you want, add a stockimage but it won't look nice at this resolution
#ax.stock_img()

# add coastline and borders to illustrate
ax.coastlines()
ax.add_feature(cf.BORDERS)

# set proper boundaries for illustration
ax.set_ylim(45.5, 48)
ax.set_xlim(5.5, 11)

Going forward, you could use requests to download the past measurement data that are linked in the dataframe via the query (hydrodata URL) and make an animation; probably xarray would be a better choice for holding the data then though…

Hope this was interesting on how to combine and going forward we’ll look at using openlayers and the JSON response from lindas to make a map.

PS: On another note, while we found an offset last time, there is one station in the dataset that has a wrong longitude as well, the station with id 2270 “Combe des Sarrasins” with latitude of 41.315… and longitude of 0.296… according to its lindas entry but should really be at 47.195… , 6.877…

Conversion swisstopo, CH1903 (LV95/LV03) and WGS83

TL;DR; Summary and code

Pass in either Latitude/Longitude to wgs84_to_ch1903 (which by default converts to CH1903+) or “Rechtswert” (x) and “Hochwert” (y) to ch1903_to_wgs84 (which detects if its CH1903+ based on the length/value of the passed digits. The most recent version is available as a github gist from me.

Python
import numpy as np

def deci2sexa(angle):

    angle = np.asarray(angle)
    # Extract DMS
    degrees = angle.astype(int)
    minutes = (angle-degrees*60).astype(int)
    seconds = (((angle-degrees)*60)-minutes)*60
    # Result sexagesimal seconds
    return seconds + minutes * 60.0 + degrees * 3600.0

def wgs84_to_ch1903(lat, lon, plus=True):

    lat, lon = deci2sexa(lat), deci2sexa(lon)
    # Auxiliary values (% Bern)
    lat_aux = (lat - 169028.66) / 10000
    lng_aux = (lon - 26782.5) / 10000

    x = (200147.07 +
         308807.95 * lat_aux  +
         3745.25 * np.power(lng_aux, 2) +
         76.63 * np.power(lat_aux, 2) -
         194.56 * np.power(lng_aux, 2) * lat_aux +
         119.79 * np.power(lat_aux, 3))

    y = (600072.37 +
         211455.93 * lng_aux -
         10938.51 * lng_aux * lat_aux -
         0.36 * lng_aux * np.power(lat_aux, 2) -
         44.54 * np.power(lng_aux, 3))

    if plus:
        x += 1000000
        y += 2000000

    return x, y
    
  def ch1903_to_wgs84(x, y, plus='auto'):

    if plus == 'auto':
        if np.nanmax(x) > 1200000 or np.nanmax(y) > 2600000:
            plus = True
        else:
            plus = False

    #  Auxiliary values (% Bern)
    y_aux = (y - 600000)/1000000 # would be 2200000 for ch1903plus
    x_aux = (x - 200000)/1000000 # would be 1200000 for ch1903plus

    if plus:
        x_aux -= 1 # new ch1903plus system has another digit to distinguish it
        y_aux -= 2 # new ch1903plus system has another digit to distinguish it
    # Process lat
    lat = (16.9023892 +
           3.238272 * x_aux -
           0.270978 * np.power(y_aux, 2) -
           0.002528 * np.power(x_aux, 2) -
           0.0447 * np.power(y_aux, 2) * x_aux -
           0.0140 * np.power(x_aux, 3))

    # Process lng
    lon = (2.6779094 +
           4.728982 * y_aux +
           0.791484 * y_aux * x_aux +
           0.1306 * y_aux * np.power(x_aux, 2) -
           0.0436 * np.power(y_aux, 3))

	# Unit 10000" to 1 " and converts seconds to degrees (dec)
    lon = lon * 100 / 36
    lat = lat * 100 / 36
    return lat, lon

Quite often I find myself having to convert WGS84 to CH1903 coordinate systems and vice versa. Sometimes I even got neither and simply have a center point and some distance (looking at you ground-based remote sensing data). While swisstopo used to have (in 2017 or so) a library to download, the current easiest way is to actually use the github repo from Valentin Minder which contains converter for several programming languages.

However, the repo contains classes (which are great of course) but I often prefer a direct function (which in Python is also a class, but well …). As such, I used the same formulas you can find elsewhere from swisstopo to do the calculation. Since I usually do not care that much about the altitude in these cases there is no option (as of yet) to include it. One upside of this version of the conversion is that its array enabled, i.e. the respective coordinates can be either a single scalar or a numpy array (not a list though ;-)).

Further reading

geo utils – get altitude profile data from swisstopo

Summary & code

Use the swisstopo API to get a profile of altitudes with the function get_swisstopo_elevation_profile by passing coordinates aka “Rechtswert” and “Hochwert” as array/list (any iterable should do). The gist on GitHub should always be the most up-to-date version

Python
def get_swisstopo_elevation_profile(coords,  # a path (2+ points in the form)
                                    kind='csv',
                                    # three heights are available for JSON
                                    # COMB, DTM2, DTM25
                                    which='COMB',
                                    asnumpy=True,
                                    quiet=True,
                                    opts={"sr": None,
                                          "nb_points": None,
                                          "offset": None,
                                          "distinct_points": True,
                                          "callback": None,
                                          }
                                    ):
    """
    Call the swisstopo API for altitude data along a path.

    Pass in a list or array of coordinates in EPSG 2056 (LV95) or 21781 (LV03)
    to get altitude values along the provided path. For options see keywords or
    parameters of call via swisstopo API.

    Parameters
    ----------
    coords : list or numpy array
        The coordinates in either EPSG 2056 (LV95) or EPSG 21781 (LV03).
    kind : str, optional
        Which API backend should be queried. Available are json and csv.
        If none of these are passed properly, fallback is csv.
        The default is 'csv' (easier structure to parse).
    which: str
        If kind is json, three altitude values are available, DTM2, DTM25 and
        COMB(INATION).
    asnumpy : bool, optional
        Whether to return a numpy array.
        The default is True.
    quiet : bool, optional
        Whether to quiet the output (True) or not.
        The default is True.
     opts: dict
        Further keywords than can be passed to the API call, see
        https://api3.geo.admin.ch/services/sdiservices.html#profile

    Returns
    -------
    list or numpy array
        The returned points, in the form of distance along path, altitude,
        coordinates.

    """

    import requests
    import numpy as np

    if len(coords) > 5000:
        print('Warning, number of coordinates exceeds swisstopo API'
              'max number of points, reduce coords beforehand.')
        return np.asarray([]) if asnumpy else []

    payload = 'geom={"type":"LineString","coordinates":['
    payload += ','.join([f"[{coord[0]},{coord[1]}]"
                         for coord in coords])
    payload += ']'
    opts = ','.join(['"'+str(key)+'"'+':'+'"'+str(opt)+'"'
                     for key, opt in opts.items()
                     if opt is not None])
    if opts:
        payload += ',' + opts
    payload += '}'
    kind = kind.lower()
    if kind.lower() not in ['csv', 'json']:
        if not quiet:
            print('Only csv or json can be chosen, autoselecting csv')
        kind = 'csv'

    baseurl = "https://api3.geo.admin.ch/rest/services/profile." + kind
    try:
        profile = requests.get(baseurl, params=payload)
    except ConnectionError:
        if not quiet:
            print('Connection timeout')
        return np.asarray([]) if asnumpy else []

    if profile.ok:
        if not quiet:
            print('Success')
    else:
        if not quiet:
            print('Failed')

    if kind == 'csv':

        profile = profile.text.split('\r\n')
        # Distance, Altitude, Easting, Northing -> not needed
        # header = profile[0]
        profile = list(map(lambda x: [float(j.strip('"'))
                                      for j in x.split(';')],
                           profile[1:-1]))
    elif kind == 'json':

        profile = [[p['dist'], p['alts'][which],
                    p['easting'], p['northing']]
                   for p in profile.json()]

    if asnumpy:
        profile = np.asarray(profile)

    return profile


if __name__ == '__main__':
    # straightforward example usage
    rw=[2611025.0, 2620975.0, 2633725.0]
    hw=[1266400.0, 1256750.0, 1250000.0]
    profile = get_swisstopo_elevation_profile(list(zip(rw, hw)))
    import matplotlib.pyplot as plt
    plt.fill_between(profile[:,0], 
                     profile[:,1], 
                     facecolor='grey',
                     edgecolor='k',
                     alpha=0.8)
    plt.ylim(min(profile[:,1]), None)

Background/motivation

For the CLOUDLAB project we regularly get forecasts that contain a profile at the bottom of the figure from MeteoSwiss that illustrates the terrain nicely (albeit, sometimes it is missing for unknown reasons):

Similarly, I produced a lot of figures of our scans and depending on azimuth and elevation they may be affected by ground clutter, e.g. at a distance of 2 km the increased reflectivity is caused by the terrain below (the hill at around 800 m above sea level). As you can see, I added the terrain already.

Initially, I thought I’d have to get the actual DEM for the area, find the path matching the scan direction and calculate the profile myself. While this might actually be a bit more accurate with a good DEM, it would be more work, not be transferable and mean I’d have to have extra data around. Instead, I realized that swisstopo offers the measure tool on map.geo.admin.ch and uses their own API with a matching request. So I choose to use this as I’m already adding the coordinates for the scan and it is relatively straightforward (min/max of lowest elevation scanline) to get the path we need. The main issue I faced was a misformatted quote that came from copy-pasting the swisstopo example. After finally figuring this out after a detailed URL decode and string comparison the function is relatively lean and can use either the JSON or the CSV backend of the API and by default gives you out a numpy array which can be visualized with ease and can look as follows:

I hope this helps someone to get a profile to enrich their Python (or other) graphs when measuring in Switzerland. In the likely case that you aren’t doing something in Switzerland it might be worthwhile to check out the Google Maps Elevation API (for which you need an API key and billing enabled)